
What Makes a Cryptographic Protocol Secure?

The Evolution of Requirements Speci�cation in

Formal Cryptographic Protocol Analysis

Catherine Meadows

Naval Research Laboratory
Center for High Assurance Computer Systems

Washington, DC 20375
meadows@itd.nrl.navy.mil

Abstract. Much attention has been paid to the design of languages
for the speci�cation of cryptographic protocols. However, the ability to
specify their desired behavior correctly is also important; indeed many
perceived protocol aws arise out of a misunderstanding of the proto-
col's requirements. In this talk we give a brief survey of the history of
requirements speci�cation in formal analysis of cryptographic protocols.
We outline the main approaches and describe some of the open issues.

1 Introduction

It has often been pointed out, that, although it is di�cult to get cryptographic
protocols right, what is really di�cult is not the design of the protocol itself,
but of the requirements. Many problems with security protocols arise, not be-
cause the protocol as designed did not satisfy its requirements, but because the
requirements were not well understood in the �rst place.

Not surprisingly, the realization of this fact has lead to a considerable amount
of research in security requirements for cryptographic protocols. However, most
of this literature is scattered, and unlike the topic of cryptographic protocol
analysis in general, there is little existing survey work providing roadmaps to
readers interested in learning more about the topic. In this paper we attempt to
remedy this de�ciency by providing a brief history and survey of the work that
has been done in this area, and outlining what we consider to be some of the
open problems.

Any scheme for expressing requirements should satisfy three properties:

1. It should be expressive enough to specify properties of interest.
2. It should be unambiguous, and preferably compatible with with some system

for formal analysis.
3. It should be easy to read and write.

It will helpful to keep these three properties in mind as we proceed through
our survey.

The paper is organized as follows. We begin in the next section by describing
some of the early approaches to specifying cryptographic protocol requirements,
including that of Burrows, Abadi, and Needham. In the third section, we describe
some of the main current approaches to requirements in terms of a spectrum from
extensional to intensional requirements. In the fourth section and �fth sections,
we discuss two emerging areas of research: graphical languages for specifying
cryptographc protocol requirements, and the expression of quantitative require-
ments. In the �nal section, we sum up what we believe to be some of the open
problems, and conclude the paper.

2 Early Work in Cryptographic Protocol Requirements

Most of the existing approaches to applying formal methods to cryptographic
protocol analysis stem ultimately from that of Dolev and Yao [9], who developed
for the �rst formalization of the intruder model that is commonly used today.
However, since Dolev and Yao's work and its immediate successors was mainly
focussed on theoretical results about the complexity of cryptographic protocol
analysis, only one type of requirement was considered, and that was the simplest:
that some term or set of terms designated as secret should not be learned by
the intruder. Some of the earlier work on automated cryptographic protocol
analysis, such as the �rst versions of the Interrogator [24], also restricted itself
to this limited de�nition of secrecy. Others, such as the earlier versions of the
NRL Protocol Analyzer[20], allowed the user to specify security in terms of the
unreachability of insecure states, in which it was possible to specify such a state
in terms of words known by the intruder and the values of local state variables
of the principles. However, the user was not given any further assistance in
constructing requirments.

Probably the �rst formal cryptographic protocol analysis system to provide
a real mechanism for constructing formal requirments was the belief logic of
Burrows, Abadi, and Needham [5].

BAN logic does not address secrecy at all. Rather it con�nes itself to questions
of authentication. Questions that BAN logic can be used to decide have to do
with beliefs the participating principals could derive about origin and use of
information such as:

1. Where does the information come from?
2. What is the information intended for?
3. Is the information new, or is it a replay?
4. Who else has these beliefs about the information?

One uses BAN logic by attempting to see which of these beliefs can be derived
from an idealization of the protocol. The BAN logic does not dictate which beliefs
a protocol should be able to satisfy; rather it is up to the protocol analyst to
decide what beliefs a protocol should guarantee, and to determine it those beliefs
can be derived from the protocol. Thus, one might require that Alice believe that

K is a good key for communicating for Bob, and that Bob believe that K is a good
key for communicating with Alice, but one might or might not want to require
that Alice believe that Bob believes that K is a good key for communicating
with Alice, and vice versa. Thus BAN logic provides what it probably the �rst
formal system for specifying cryptographic protocol requirements.

3 Safety Requirements for Cryptographic Protocols:

Secrecy and Correspondence

In the early to mid-90's the approach to cryptographic protocol veri�cation
tended towards the application of general-purpose tools such as model-checkers
and theorem provers. With this came the need to develop means for specifying
the properties one was attempting to prove. Since, in general, researchers were
now reasoning directly about messages passed in a protocol, rather than about
beliefs that were developed as a result of receiving those messages, it now made
sense to develop requirements in terms of messages sent and received rather than
beliefs derived.

As is the case for requirements in general, requirements for cryptographic pro-
tocols tend to fall into two categories, extensional and intensional. Extensional
systems provide a small set of generic requirements that can be de�ned inde-
pendently of the details of any particular protocol. Intensional systems provide
languages and techniques that can be used to specify requirements for speci�c
protocols in terms of the protocols themselves. This concept was �rst discussed in
detail in the context of cryptographic protocols by Roscoe in [27]. He noted that
the earlier work in cryptographic protocol requirements, such as BAN, leaned to
the extensional side, and he showed how one might specify intensional protocol
requirements in CSP.

Requirements for cryptographic protocols also fall into two classes that are
related to the properties that such protocols are intended to enforce: secrecy and
correspondence. Secrecy requirements describe who should have access to data.
Correspondence requirements describe dependencies between events that occur
in a protocol, and are usually used to express authentication properties. These
two types of requirements later turned out to be more closely related than one
might think (both Syverson and Meadows [32] and Schneider [28] de�ne secrecy
requirements as a type of correspondence requirement), but for the moment we
shall treat them as separate.

Of course, not all requirements can be characterized in terms of secrecy and
correspondence. In particular, they are both safety properties, so any non-safety
requirements (such as fairness and its relatives, which are relevant for many
electronic commerce protocols) will not fall into either of these two categories.
However, secrecy and correspondence cover most requirements relevant to au-
thentication and key exchange, and thus make a good starting point.

At �rst, correspondence requirements appeared to be the most subtle and
complex; thus the earlier work tended to concentrate on these. Moreover, the

emphasis was on extensional requirements and the ability to characterize a gen-
eral notion of correspondence in a single de�nition. Probably the �rst work in
this area was that of Bird et al [4]. In the introduction to their paper, they de-
scribe an error-free history of a protocol runs between two prinicpals A and B to
be one in which all executions viewed by both parties match exactly one-to-one.
This is idea is re�ned by Di�e, van Oorschot and Wiener in [8] to the idea of
matching protocol runs, which says that at the time Alice completes a proto-
col the other party's record of the run matches Alice's. This notion was further
re�ned and formalized by Bellare and Rogaway in [3] to the notion of match-

ing conversations, which developed the idea in terms of a complexity-theoretic
framework.

Such general of notions of correspondence can be very useful, but they do
have a drawback. They can be used to determine whether or not information
was distributed correctly, but they can not be used to determine whether or not
all information that should have been authenticated was included in the run.

To see what we mean, we consider the attack found by Lowe [18] on the
Station-to-Station protocol of [8]. The protocol is de�ned as follows:

1. A! B : xNA

2. B ! A : xNB ; EK(SB(x
NA ; xNB))

where K is the Di�e-Hellman key generated by A and B.
3. A! B : ; EK(SA(x

NB ; xNA))

Lowe's attack runs as follows:

1. A! B : xNA

An intruder I intercepts this message and forwards it to B, as if it came
from C.

2. B ! IC : xNB ; EK(SB(x
NB ; xNB))

The intruder forwards this message to A.

Thus, at the end of A's run, A believes that it shares a key with B. B, how-
ever, thinks that C is trying to establish a connection with it, and it will reject
A's �nal message when it receives it, because it is expecting con�rmation from
C, not A. On the other hand, the protocol does satisfy the matching protocol
runs de�nition of security, since A's picture of the authenticated portions of the
messages is the same as B's. Indeed, this is the protocol used to illustrate the
concept by Di�e, van Oorschot, and Wiener in [8].

Lowe's attack, of course, does not mean the Station-to-Station protocol is
insecure. (Indeed, this very feature of that protocol is seen as a desirable property
in the latest version of IKEv2, the proposed replacement to the Internet Key
Exchange protocol [17]). All it does is show that, if the name of the intended
recipient is not included in the responder's message, a de�nition of security that
is speci�ed in terms of conditions on correspondence between messages will not
catch lack of agreement on information that is never sent.

Lowe's solution to this problem in [18] was to strengthen the matching proto-
col runs requirement to include the condition that when A completes a protocol

run with B, then not only should the two protocol runs match, but B should
believe that he has been running the protocol with A. In a later paper, [19],
he developed this idea further, developing a hierarchy of authentication require-
ments which gave conditions of varying degrees of strictness on the conclusions
a principal A could draw about B's view of the protocol after completing the
protocol with B. These were then formalized using the process algebra CSP.

The least restrictive requirement Lowe gave was liveness, which simply re-
quires that, when A completes a run of the protocol, apparently with B, then
B has also been running the protocol. Moving further up the hierarchy, we re-
quire A and B to agree on messages sent as well as identities (this requirement
correspondes roughly to matching protocol runs), to agree on the roles they are
playing, to agree on the values of speci�c data items, and so forth.

We see now that we are moving away from extensional requirements that can
be speci�ed independently of the protocol, and more to intensional requirements.
If principals need to agree on speci�c data items, we need to specify what these
data items are, and where they occur in the protocol. The next step would be
to specify the conditions on events that occur in protocols. Indeed, it should
be possible to specify the types of requirements we are interested in using the
temporal logics that are generally used to provide correctness speci�cations for
model checkers.

This is the sort of reasoning that lay behind Syverson and Meadows' devel-
opment of a requirements language for the NRL Protocol Analyzer [32], which
eventually became known as the NRL Protocol Analyzer Temporal Require-
ments Language (NPATRL). The idea is to develop a simple temporal language
that can be used to specify the type of requirements that are commonly used
in authentication and key distribution protocols. The atomic components of the
language correspond to events in the protocol (e.g. the sending and receiving
of messages, or the intruder's learning a term). Besides the usual logical con-
nectives, it contains only one temporal operator, 3- , or \happened previously."
The use of this single logical operator reects the fact that most correspondence
requirements can be expressed in terms of events that must have or must have
not occurred before some other events.

Although NPATRL is a very simple language, we have found it useful for
specifying some widely varying types of cryptographic protocols. These include
key distribution and key agreement protocols [30, 31], complex electronic com-
merce protocols such as SET [22], and, most recently, group key distribution
protocols [23].

One interesting result of our experience is that we have found NPATRL in-
creasingly useful for specifying complex secrecy requirements as well as complex
authentication requirements. Early requirements for secrecy simply designated
some information, such as keys, as secret, and all that needed to be guaran-
teed was that these keys would not be available to an intruder. However, more
recently, requirements such as perfect forward secrecy put other conditions on
an intruder learning a term. Perfect forward secrecy requires that, if a master
key is compromised, then an intruder can only learn a session key after the

compromise, not before. Such a requirement is straightfoward to specify using a
temporal language.

Of course, temporal logics are not necessary in order to specify these types
of requirements. Other formalisms will work as well. For example, Schneider
[28] de�nes authentication in terms of the messages that must precede a given
message, and secrecy in terms of another correspondence requirement, that the
intruder should not learn data unless that data was explicitly sent to the intruder.
Both of these are formalized in CSP.

Another approach to requirements, taken by Focardi et al. [12], allows one to
specify requirements of varying degree of generality. They make use of notions
derived from noninterference. Their notion of correctness, Generalized Nonde-
ducibility on Composition, or GNDC, is de�ned as follows.

We let P be a process representing a cryptographic protocol operating in the
absence of an intruder. Let (P jjX) denote the composition of P with an intruder
X . Let � denote a function from processes to processes where �(P) is a process
describing the \correct" behavior of P . Let � denote a preorder. Let C denote
the set of channels between honest principals, and let Q C denote the restriction
of a process Q to C. Then a process satis�es GNDC�

�
, if, for all intruders X

(P jjX)nC � �(P)

In the case of that � is the identity function and � is trace equivalence, the
property becomesNDC, or Nondeducibility on Composition, which requires that
the traces produced by the process in composition with an intruder be the same
as the traces produced by the process in the absence of the intruder. This can be
thought of as an information-ow property in which the intruder and P play the
apart of High and Low, respectively, corresponding to the standard multilevel
application of noninterference for multilevel security [14]. NDC, since it requires
that a process behave in the presence of an intruder exactly at it would behave
in the absence, is more stringent than any of the other requirements that have
been discussed in this section. As a matter of fact, we can consider it the most
stringent de�nition possible, closely akin to the fail-stop de�nition of protocol
security of Gong and Syverson[13]. Moreover,GNDC provides a framework that
allows one to specify less restrictive requirements such as the various forms of
correspondence discussed earlier, and the types of requirements that would be
de�ned in a temporal language such as NPATRL. Thus GNDC can be thought
of as providing a general framework for requirements, including requirements
that go beyond the usual notions of correspondence, such as liveness.

Another technique that deserves mention is the notion of using type theory
to specify security requirements and evaluate the correctness of protocols [1,
15]. Here components making up a protocol, such as data, channels, etc. are
assigned di�erent types, such as secret or public. Rules are also developed for
deriving types from the results of applying operations, such as encryption, on
data. Security violations can be de�ned in terms of typing violations, such as a
piece of data type public appearing on a channel of type public. Most of this
work has been applied to the type-checking of secrecy properties, but Gordon and
Je�rey [15, 16] have developed ways of applying it to correspondence properties,

speci�cally one-to-one (each event of a certain type should be preceded by one
and only one event of a certain other type) and one-to-many (each event of a
certain type should be preceded by at least one event of a certain type). Since
the types are supplied as part of the protocol speci�cation, this application of
type theory gives a nice way of incorporating a requirements speci�cation as an
annotation on the protocol.

4 Graphical Requirements Languages

Languages and frameworks such as NPATRL and GNDC allow us increasing
exibility and expressiveness for specifying requirements. But, the ability to
specify more complex and subtle requirements also has a cost; the requirements
become more di�cult to comprehend and write. In this section we discuss two
graphical approaches to increasing the ease of handling such speci�cations that
make use of some of the common features of cryptographic protocols and their
requirements.

The �rst of these is known as Strand Space Pictures [10]. Strand spaces [11]
are a well-known and popular model for cryptographic protocol analysis, in which
the actions of principals are modeled in terms of graphs. A strand represents a
principal executing a role in a protocol. The sending and receiving of messages
is represented by positive and negative nodes. Nodes that represent one event
immediately preceding another on a strand are connected by double arrows. A
bundle is a collection of strands, in which positive send nodes can be connected
to negative receive nodes via a single arrow if the message sent matches the mes-
sage received. This model facilitates the graphical representation of protocols,
and [10] actually describes a number of ways in which the graphical features of
strand spaces could be used, but the one of most interest to us is the way in
which they can be used to represent requirements. Using strand space represen-
tation of protocols, it is possible to represent correspondence requirements in
terms of relative placement of strands. Thus, if we want to specify a correspon-
dence requirement which requires that if certain messages are accepted, then
other messages were sent previously, we can represent sending and receipt of the
messages we are interested in by portions of strands, and we can use the place-
ment of the strands (so that earlier nodes appear above later ones) to indicate
which events we want to occur before others.

The strand space pictures methodology, was never, as far as we know, devel-
oped into a full-edged procedure with well-de�ned ways for representing major
classes of requirements. However, in [10] the authors give several examples which
show how some standard requirements such as freshness or agreement properties
could be represented in this framework.

It is also possible to use strand spaces to provide a very convenient way of
expressing a limited type of correspondence. Strands can be parameterized by
the name of the principal executing the strand and the data it sends and re-
ceives. Thus, in the Station-to-Station protocol the initiator's strand would be
parameterized by Init[A;B;X; Y;K], while the responder's would be parame-

terized by Resp[B;A;X; Y;K] , where X and Y are the initiator's and respon-
der's Di�e-Hellman components, respectively, and K is the key derived from
the Di�e-Hellman exchange. Earlier, we described how Lowe showed that af-
ter A completed the Station-to-Station protocol, A and B would agree on B's
identity and on the Di�e-Hellman components and key, but not A's identity.
We could express that fact as a requirement that, after an initiator A �nishes
executing the protocol, apparently with a responder B, if the initiator's strand
is Init[A;B;X; Y;K], then the responder's strand is Resp[�; A;X; Y;K], where
* denotes a wild card. Unlike the strand space pictures, this notation cannot
express conditions on the relative times of occurrence of events from two dif-
ferent strands. However, since many requirements have to do not so much with
agreement on placement of events as with agreement on data such as keys, this
notation has been useful for in a number of di�erent cases. It would be inter-
esting to see how far it could be extended and still retain its compactness and
readability.

A somewhat di�erent approach has been taken by Cervesato and Meadows [7]
in the development of a graphical representation of the NPATRL language. This
representation was based on the fact that queries in the NRL Protocol Analyzer,
for which NPATRL was designed, are couched in terms of events that should or
should not precede some speci�ed event. Such a way of formatting queries has an
obvious connection to fault trees. A fault tree is a graphical means of represent-
ing failure modes in safety-critical systems. The root of the tree represents the
failure with which the system designer is concerned, and the branches represent
the conditions under which the fault can occur. The main di�erence between
NPA queries and fault trees is that in NPA queries the relationship is one of
precedence, while in fault trees it is one of causality. Otherwise the structure is
very similar. Moreover, the graphical representation makes it easier to under-
stand the relationships between the various events. For this reason, we found it
very helpful, in particular, to represent the GDOI requirements, especially the
more complex ones, in terms of fault trees. In [7] a fault tree semantics for the
subset of NPATRL requirements accepted by the NPA is developed, and some
sample requirements are shown.

5 Quantitative and Probabilistic Requirements

So far, with few exceptions, the requirements we have looked at have dealt
with safety requirements for discrete systems. This �ts well when we want to
analyze authentication and key distribution protocols that follow the Dolev-Yao
model, where the cryptosystem is a black box, and principals communicate via
a medium controlled by a hostile intruder who can read, alter, and intercept
all tra�c. But, since the correctness of a protocol depends on the correctness
of the cryptoalgorithm that uses as well as the way it uses those algorithms,
it would be useful to have correctness criteria that took the properties of the
cryptoalgorithms into account.

Prior to and concurrent with the explosion of formal methods approaches to
cryptographic protocol analysis, there has been a parallel e�ort in developing
correctness criteria for cryptoalgorithms and cryptographic protocols based on
complexity-theoretic approaches. Indeed, the work of Bellare and Rogaway cited
earlier was developed in such a context. What has been lacking however, has
been a means of integrating such a complexity-theoretic approach with the logical
systems that we have been considering in this paper. However, some work in this
area is beginning to appear, such as the work of Abadi and Rogaway [2], which
considers a complexity-theory based model as a semantics for a logical system,
although it restricts itself to secrecy requirements, and the work of Mitchell et al
[25], which develops a notion of bisimulation that takes into account complexity-
theoretic and probabilistic considerations.

The use of cryptography is not the only place where quantitative require-
ments become relevant. For example, many anonymity protocols, are intended
to provide a statistical notion of security. An intruder may have a nontrivial
chance of guessing the identity of a sender or receiver of tra�c, but we do not
want that chance to exceed a certain threshold. Protocols intended to protect
against denial of service attacks may need to limit the the amount of resources
expended by a responder in the early steps of the protocol. Recently, researchers
have begun to investigate ways of applying formal methods to the analysis of pro-
tocols that must satisfy quantitative requirements. Examples include the work of
Meadows on a model for the analysis of protocols resistance to denial of service
[21] where requirements are speci�ed in terms of a comparison between resources
expended by a responder versus resources expended by an initiator; the work
of Butty�an and Hubaux [6] on rational exchange protocols, in which a protocol
is modeled as a game in which all principals are assigned payo�s, and an ex-
change protocol is deemed rational if the strategies available to all participants
form a Nash equilibrium; and the work of Shmatikov on anonymity protocols
and contract signing, in which the protocols and their requirements are mod-
eled in terms of Markov chains [29, 26], making them amenable to analysis by
probabilistic model checkers.

6 Conclusion

We have given a brief survey of research in expressing cryptographic protocol
requirements. We believe that it this point we have a good handle on the spec-
i�cation of the standard secrecy and correspondence requirements of security
protocols. It appears possible to derive techniques that are compatible with
just about any type of formal system, and we have a vast range of requirement
speci�cation styles, from one end of the extensional-intensional spectrum to the
other.

There are of course a number of areas in which work on cryptographic pro-
tocol requirements needs to be extended. One is in making the requirements
language user-friendly. Security protocols, and thus their requirements, can be
complex; even more so when one must consider operation in partial failure modes

such as compromise of temporary session keys. Thus it makes sense to concen-
trate on ways of making requirements languages easier to use, even when the
requirements are complex. In this paper we discussed some of the work on graphic
requirements languages that attempts to address this problem.

Another area in which work is just starting is in extending cryptographic
requirements speci�cations beyond secrecy and correspondence. These would
apply to protocols whose goals go beyond those of key distribution and authen-
tication that have traditionally been handled in this area. One area of particular
interest here is quantitative requirements. We have pointed out some areas in
which the ability to understand a protocol's behavior from a quantitative point
of view appears to be crucial. In this case, not only requirements need to be
developed, but formal models for specifying the protocols that must satisfy the
requirements. We have described some of the work in this area as well.

There are some other areas which could also use more exploring. For example,
many electronic commerce protocols must satisfy various types of non-safety
requirements. Is it possible to develop ways of characterizing and specifying these
requirements in ways that are particularly relevant to security protocols, as has
been done for the safety properties of secrecy and correspondence? Another area
of research has to do with interoperability. Increasingly, many protocols will rely
upon other protocols to supply some of their security services. What is the best
way to specify services needed by one protocol in terms of requirements upon
another? We hope to see research in these and other emerging areas in the near
future.

References

1. M. Abadi. Secrecy by typing in security protocols. Journal of the ACM, 46(5):749{
786, September 1999.

2. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computa-
tional soundness of formal encryption). Journal of Cryptology, to appear.

3. M. Bellare and P. Rogaway. Entity authentication and key distribution. In Ad-
vances in Cryptology - CRYPTO '93. Springer-Verlag, 1993.

4. R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, and M. Yung.
Systematic design of two-party authentication protocols. InAdvances in Cryptology
- Proceedings of CRYPTO 91. Springer-Verlag, 1991.

5. Michael Burrows, Mart��n Abadi, and Roger Needham. A Logic of Authentication.
ACM Transactions in Computer Systems, 8(1):18{36, February 1990.

6. L. Butty�an and J.-P. Hubaux. Rational exchange { a formal model based on game
theory. In 2nd International Workshop on Electronic Commerce (WELCOM'01),
16-17 November 2001.

7. I. Cervesato and C. Meadows. A fault-tree representation of NPATRL security
requirements. submitted for publication, 2003.

8. Whit�eld Di�e, Paul C. van Oorschot, and Michael J. Wiener. Authentication
and Authenticated Key Exchanges. Designs, Codes, and Cryptography, 2:107{125,
1992.

9. D. Dolev and A. Yao. On the Security of Public Key Protocols. IEEE Transactions
on Information Theory, 29(2):198{208, March 1983.

10. F. J. Thayer F�abrega, J. Herzog, and J. Guttman. Strand space pictures. In
Proceedings of the Workshop on Formal Methods and Security Protocols, 1998.
available at http://www.cs.bell-labs.com/who/nch/fmsp/program.html.

11. F. Javier Thayer F�abrega, Jonathan C. Herzog, and Joshua D. Guttman. Strand
spaces: Why is a security protocol correct? In Proceedings of the 1998 IEEE Sym-
posium on Security and Privacy, pages 160{171. IEEE Computer Society Press,
May 1998.

12. R. Focardi, R. Gorrieri, and F. Martinelli. Non interference for the analysis of
cryptographic protocols. In U. Montanari, editor, 27th International Colloquium
on Automata, Languages and Programming (ICALP'00). Springer Verlag: LNCS
1583, July 2000.

13. Li Gong and Paul Syverson. Fail-stop protocols: An approach to designing se-
cure protocols. In R. K. Iyer, M. Morganti, Fuchs W. K, and V. Gligor, editors,
Dependable Computing for Critical Applications 5, pages 79{100. IEEE Computer
Society, 1998.

14. J. Goquen and J. Meseguer. Security policy and security models. In Proceedings
of the 1982 Symposium on Security and Privacy, pages 11{20. IEEE Computer
Society Press, 1982.

15. A. Gordon and A. Je�rey. Authenticity by typing in security protocols. In Proceed-
ings of the 14th IEEE Computer Security Foundations Workshop. IEEE Computer
Society Press, June 2001.

16. A. Gordon and A. Je�rey. Typing one-to-one and one-to-many correspondences
in security protocols. In International Software Security Symposium (ISSS 2002).
Springer LNCS, 2003.

17. Paul Ho�man. Features of proposed successors to IKE. Inter-
net Draft draft-ietf-ipsec-soi-features-01.txt, May 31 2002. available at
http://ietf.org/internet-drafts/draft-ietf-ipsec-soi-features-01.txt.

18. G. Lowe. Some new attacks on security protocols. In Proceedings of the 9th
IEEE Computer Security Foundations Workshop, pages 162{169. IEEE Computer
Society Press, 1996.

19. G. Lowe. A hierarchy of authentication speci�cations. In Proceedings of the 10th
IEEE Computer Security Foundations Workshop, pages 31{43. IEEE Computer
Society Press, 1997.

20. C. Meadows. Applying Formal Methods to the Analysis of a Key Management
Protocol. Journal of Computer Security, 1:5{53, 1992.

21. C. Meadows. A cost-based framework for analysis of denial of service in networks.
Journal of Computer Security, 2001.

22. C. Meadows and P. Syverson. A formal speci�cation of requirements for payment
in the SET protocol. In Proceedings of Financial Cryptography '98. Springer-Verlag
LLNCS, 1998.

23. C. Meadows, P. Syverson, and I. Cervesato. Formalizing GDOI group key man-
agement requirements in NPATRL. In Proceedings of the ACM Conference on
Computer and Communications Security. ACM, November 2001.

24. J. K. Millen, S. C. Clark, and S. B. Freedman. The Interrogator: Protocol Security
Analysis. IEEE Transactions on Software Engineering, SE-13(2), 1987.

25. J.C. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague. A probabilistic
polynomial-time calculus for analysis of cryptographic protocols (preliminary re-
port). Electronic Notes in Theoretical Computer Science, 45, 2001.

26. G. Norman and V. Shmatikov. Analysis of probabilistic contract signing. In BCS-
FACS Formal Aspects of Security (FASec '02), 2002.

27. A. W. Roscoe. Intensional speci�cation of security protocols. In Proceedings of the
9th IEEE Computer Security Foundations Workshop, pages 28{38. IEEE Computer
Society Press, June 10-12 1996.

28. S. Schneider. Security properties and CSP. In IEEE Computer Society Symposium
on Security and Privacy. IEEE Computer Society Press, 1996.

29. V. Shmatikov. Probabilistic analysis of anonymity. In Proceedings of the 15th
Computer Security Foundations Workshop. IEEE Computer Society Press, June
2002.

30. P. Syverson and C. Meadows. Formal requirements for key distribution protocols.
In Proceedings of Eurocrypt '94. Springer-Verlag, 1994.

31. P. Syverson and C. Meadows. A formal language for cryptographic protocol re-
quirements. Designs, Codes, and Cryptography, 7(1/2):27{59, 1996.

32. Paul Syverson and Catherine Meadows. A Logical Language for Specifying Crypto-
graphic Protocol Requirements. In Proceedings of the 1993 IEEE Computer Society
Symposium on Research in Security and Privacy, pages 165{177. IEEE Computer
Society Press, Los Alamitos, California, 1993.

